Interpreting descriptions in intensional type theory
نویسنده
چکیده
Calculi of indefinite and definite descriptions are presented, and interpreted in Martin-Löf’s intensional type theory. The interpretations are formalizations of the implicit ideas found in the literature of constructive mathematics: if we have proved that an element with a certain property exists, we speak of ’the element such that the property holds’ and refer by that phrase to the element constructed in the existence proof. In particular, we deviate from the practice of interpreting descriptions by contextual definitions.
منابع مشابه
The Strict ω-Groupoid Interpretation of Type Theory
Hofmann and Streicher showed that there is a model of the intensional form of Martin-Löf’s type theory obtained by interpreting closed types as groupoids. We show that there is also a model when closed types are interpreted as strict ω-groupoids. The nonderivability of various truncation and uniqueness principles in intensional type theory is then an immediate consequence. In the process of con...
متن کاملThe Path Model of Intensional Type Theory
The groupoid interpretation of Martin-Löf type theory not only shows the independence of uniqueness of identity proofs from the axioms of intensional type theory but is also constructive and validates the computation rules as definitional equalities. The groupoid semantics are very clear when interpreting dependent types and in particular the identity types but less so when defining equality pr...
متن کاملOn the Interpretation of Type Theory in Locally Cartesian Closed Categories
We show how to construct a model of dependent type theory (category with attributes) from a locally cartesian closed category (lccc). This allows to deene a semantic function interpreting the syntax of type theory in an lccc. We sketch an application which gives rise to an interpretation of extensional type theory in intensional type theory.
متن کاملOn the Semantics of Intensionality and Intensional Recursion
Intensionality is a phenomenon that occurs in logic and computation. In the most general sense, a function is intensional if it operates at a level finer than (extensional) equality. This is a familiar setting for computer scientists, who often study different programs or processes that are interchangeable, i.e. extensionally equal, even though they are not implemented in the same way, so inten...
متن کاملExtensional Equality in Intensional Type Theory
We present a new approach to introducing an extensional propositional equality in Intensional Type Theory. Our construction is based on the observation that there is a sound, intensional setoid model in Intensional Type theory with a proof-irrelevant universe of propositions and -rules for and -types. The Type Theory corresponding to this model is decidable, has no irreducible constants and per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 70 شماره
صفحات -
تاریخ انتشار 2005